Последние темы автора:
- [Юлия Воронина] Путь Деревянной змеи. Все секреты 2025 года. Тариф Голд (2025)
- [Валерия Коваленко] Таро Светлого Провидца. Полный курс (2022)
- [Neyrograph] Подписка на контент Искусственный интеллект для творчества и заработка. Тариф На связи с Нейрографом. Июль (2025)
- [Артур Хорошев] Make.com: автоматизация промпт-инжиниринг нейросети. Июль (2025)
- [Александр Шестаков] Reels-конвейер Ленивая схема. Тариф Конвейер (2025)
[Валерий Манохин, Артем Груздев] [ДМК] Конформное прогнозирование в Python (2024)
Данная книга предлагает углубленное изучение конформного прогнозирования — новейшего подхода, позволяющего управлять неопределенностью в различных задачах машинного обучения. Вы узнаете, как конформное прогнозирование создает точно откалиброванные прогнозные интервалы для регрессии и решает задачи прогнозирования временных рядов и несбалансированных данных. Практические примеры на Python, а также использование реальных наборов данных, экспертных рекомендаций и открытых библиотек обеспечат вам глубокое понимание этого подхода.
Для изучения материала понадобятся базовые знаниями в области машинного обучения и программирования на Python.
Издание: Цветное
Оригинальное название: Practical Guide to Applied Conformal Prediction in Python
Автор: Манохин В., Груздев А.В.
Формат: PDF.
Подробнее:
Описание:
Данная книга предлагает углубленное изучение конформного прогнозирования — новейшего подхода, позволяющего управлять неопределенностью в различных задачах машинного обучения. Вы узнаете, как конформное прогнозирование создает точно откалиброванные прогнозные интервалы для регрессии и решает задачи прогнозирования временных рядов и несбалансированных данных. Практические примеры на Python, а также использование реальных наборов данных, экспертных рекомендаций и открытых библиотек обеспечат вам глубокое понимание этого подхода.
В числе рассматриваемых тем:
- основные концепции и принципы конформного прогнозирования;
- отличие конформного прогнозирования от традиционных методов машинного обучения;
- конформное прогнозирование для несбалансированных наборов данных и многоклассовой классификации;
- передовые методы измерения и управления неопределенностью в промышленных задачах;
- конформный подход к оценке неопределенности в прогнозировании и NLP.
Для изучения материала понадобятся базовые знаниями в области машинного обучения и программирования на Python.
Издание: Цветное
Оригинальное название: Practical Guide to Applied Conformal Prediction in Python
Автор: Манохин В., Груздев А.В.
Формат: PDF.
Подробнее:
Для просмотра ссылок пройдите регистрацию
